B.Sc/3rd Sem (H)/CHEM/23(CBCS)

2023

3rd Semester Examination CHEMISTRY (Honours)

Paper: C 6-T

[Inorganic Chemistry - II]

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any five questions:

2×5=10

- (a) What is the probable energy source of sun?
- (b) How age of rocks can be determined?
- (c) Write down the limitations of radius ratio rule with an example.
- (d) Calculate the bond orders of CN^- and O_2^- .
- (e) Arrange the following compounds with increasing order of their dipole moment. NH_3 , NF_3 , NCl_3 . Explain the order.

P.T.O.

- (f) CD₄ has slight lower boiling point than CH₄. Explain.
- (g) Why $HgCl_2$ is colourless but HgI_2 is deep red in colour?
- (h) Between NaCl and CuCl, which has higher melting point and why?

Group - B

2. Answer any four questions:

- 5×4=20
- (a) (i) Predict the structures of NOCl and ICl_2^+ .
 - (ii) KHF₂ can easily be formed whereas KHCl₂ does not Explain.
 - (iii) Calculate the lattice energy of $Mg(ClO_4)_2$ using Kapustinskii equation. Radii of Mg^{2+} and ClO_4^- ions are 86 pm and 226 pm, respectively. $K = 1.214 \times 10^5$ kJ unit. 1+2+2
 - (b) (i) How mass defect is related to binding energy?
 - (ii) Why packing fraction may be positive or negative whereas mass defect cannot.
 - (iii) Calculate the average binding energy per nucleon in ${}_{2}^{3}H$ (mass = 3.016030 μ) and ${}_{1}^{3}H$ (mass = 3.016050 μ)

11/2+11/2+2

- (c) (i) Explain why Be shows electrical conductivity.
 - (ii) U-238 cannot be commonly used as nuclear fuel Explain.
 - (iii) What do you mean by nuclear isomerism? 2+2+1
- (d) (i) 1 gm of ²²⁶Ra emits 11.6×10^{17} α particles per year. Calculate the value of the Avogadro number. ($t_{1/2} = 1590$ year).
 - (ii) With the help of MO theory calculate the bond order of NO.
 - (iii) What do you mean by δ-bond? 2+2+1
- (e) (i) Although oxygen shows high second electron affinity value, MgO is well known. Explain.
 - (ii) Suggest reasonable crystal structure of CaF_2 and TiO_2 from the following radii (pm)
 - $Ca^{2+} = 126, F^{-} = 119, Ti^{4+} = 74.5, O^{2-} = 126.$
 - (iii) The melting point of AgCl is 445°C whereas in case of KCl it is 776°C; Although the radii of K⁺ and Ag⁺ are almost same. Explain.

 1½+1½+2

- (f) (i) Draw the molecular orbital (MO) energy level diagram of NO molecule.
 - (ii) NO is more reactive than N_2 . Explain.
 - (iii) Explain the ligating behaviour of NO.

2+2+1

Group - C

3. Answer any one question:

 $10 \times 1 = 10$

- (a) (i) Define Frenkel and Schottky defects in solid. Cite example for each defects.
 - (ii) What do you mean by receptor-guest interaction?
 - (iii) What is artificial radioactivity? Give an example.
 - (iv) Write down the hazards of radiation and how this can be prevented? 3+2+2+3
- (b) (i) Calculate electron gain enthalpy (-EA) of chlorine from the following ΔH data (kJ mol⁻¹):

$$D_{Cl_2} = 242$$
, $I_{Na} = 494$, $\Delta H_{sub}(Na) = 109$, $\Delta H_f^0(NaCl) = -414$, $r_{Na^+} + r_{Cl^-} = 281$ pm in $NaCl$.

(ii) Explain the bonding of $[Re_2Cl_8]^{2-}$ in the light of MO theory.

- (iii) Among $MgCO_3$ and $CaCO_3$ which is thermally more stable and why?
- (iv) What are the differences between ion-dipole interaction and induced dipole interaction?

 3+4+1+2